Running head: STRUCTURED STATISTICAL MODELS Structured statistical models of inductive reasoning

نویسندگان

  • Charles Kemp
  • Joshua B. Tenenbaum
چکیده

Everyday inductive inferences are often guided by rich background knowledge. Formal models of induction should aim to incorporate this knowledge, and should explain how different kinds of knowledge lead to the distinctive patterns of reasoning found in different inductive contexts. We present a Bayesian framework that attempts to meet both goals and describe four applications of the framework: a taxonomic model, a spatial model, a threshold model, and a causal model. Each model makes probabilistic inferences about the extensions of novel properties, but the priors for the four models are defined over different kinds of structures that capture different relationships between the categories in a domain. Our framework therefore shows how statistical inference can operate over structured background knowledge, and we argue that this interaction between structure and statistics is critical for explaining the power and flexibility of human reasoning.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structured statistical models of inductive reasoning.

Everyday inductive inferences are often guided by rich background knowledge. Formal models of induction should aim to incorporate this knowledge and should explain how different kinds of knowledge lead to the distinctive patterns of reasoning found in different inductive contexts. This article presents a Bayesian framework that attempts to meet both goals and describes [corrected] 4 application...

متن کامل

Theory-based Bayesian models of inductive learning and reasoning.

Inductive inference allows humans to make powerful generalizations from sparse data when learning about word meanings, unobserved properties, causal relationships, and many other aspects of the world. Traditional accounts of induction emphasize either the power of statistical learning, or the importance of strong constraints from structured domain knowledge, intuitive theories or schemas. We ar...

متن کامل

Sparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains

In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...

متن کامل

Comparing the inductive biases of simple neural networks and Bayesian models

Understanding the relationship between connectionist and probabilistic models is important for evaluating the compatibility of these approaches. We use mathematical analyses and computer simulations to show that a linear neural network can approximate the generalization performance of a probabilistic model of property induction, and that training this network by gradient descent with early stop...

متن کامل

Mining the Semantic Web Statistical Learning for Next Generation Knowledge Bases

In the Semantic Web vision of the World Wide Web, content will not only be accessible to humans but will also be available in machine interpretable form as ontological knowledge bases. Ontological knowledge bases enable formal querying and reasoning and, consequently, a main research focus has been the investigation of how deductive reasoning can be utilized in ontological representations to en...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008